
Theoretical Mechanics 

Final Exam 

December 11, 2018 

 

1. (20 Pts.) Consider three pendula, each of length l , that are coupled by identical springs with 

spring constant k . The pendula are horizontally separated by the natural rest length of the springs

d . The outer pendula have a mass m and the center pendulum has a mass 2m . 

a. Draw a suitable diagram for this problem, letting i  represent the angle of the pendula. 

 

The diagram should have three pendula hanging down. The angle the pendula are making 

with the vertical are the i . The diagram describes the coordinate assignments for the rest of 

the problem. 

 

b. Assuming the angles i  remain small, show that the Lagrangian of this system is 
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c. Evaluate the mass and potential matrices and write the eigenvalue equation (do not attempt to 

solve). 
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2. (20 Pts.) Consider a canonical transformation generated by 
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 where   is an infinitesimal quantity. 

a. By neglecting any order 
2 or higher terms, show that the resulting canonical transformation 

differs from the identity transformation by terms of order   with 
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Specifically, why is the second equality in the
iQ  equation valid? 

 

The equations 
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are just the rules for defining the new coordinates with an 2S  generating function and are 

exact. Nominally, they should be “solved” to obtain the transformation formulas 
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Clearly, retaining terms of only linear order in  
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Now, note that to the same order, by Taylor’s theorem,    1
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with the new momenta replaced by the old in the original generating function. 

  

b. Under this canonical transformation, show that the function  1
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By part a. and Taylor’s theorem, only collecting terms of linear order in  , 



   

 

1 1

1 1

1 1

, , , , , , , , , ,

,

n n
n n

n n i i
i ii i

F G F G
F Q Q P P F q q p p

q p p q

F G

 



 

   
  

   



 
 

 

c. If G is a constant of the motion of the Hamiltonian flow with Hamiltonian H, what is dH?  

What can you conclude? (Hint: Converse of Noether’s Theorem) 

 

A constant of the motion has vanishing Poisson bracket with the Hamiltonian. By part b., 

dH=0. The (infinitesimal) transformation generated by the constant of the motion leaves the 

Hamiltonian invariant. Incidentally, the same is true for finite transformations built up from a 

series of infinesimal ones. 

 

3. (25 Pts.) Consider a string of uniform mass density with fixed end points and initial 

configuration 
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a. Write down the Lagrangian of this system assuming a uniform tension in the string. Then 

use the Euler-Lagrange equation to derive the equation of motion for the string. 
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b. Introduce a linear damping force on the string. This change will modify the equation of 

motion to, 
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Explain why  must be a positive quantity. 

 

If   were negative, the solution for /u t  would tend to grow exponentially with time 

indicating instability. Positive   insures that the string motion is damped. 

 

c. Substitute a solution of the form      ,u x t x t   and into the equation of motion in part 

b. Use separation of variables then the boundary and initial conditions to determine the 

eigenfunctions  n x , and the space mode of the solution (don’t solve for  t yet). 
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The general solution for the  x  equation solving the boundary conditions in x  is 
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To solve the first initial condition only 3n  appears so 
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The initial conditions for the problem become  0 1t   and  0 0t   . 

 

d. Show that  t  will have a functional form of        cos / sinFtt e Gt F G Gt     , if 
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You need not determine the coefficients F,G. [Hint: After separating variables in part c., 

assume   tt e   where   is a constant.] 

 

Using the exponential ansatz 
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If the condition is satisfied the square root is pure imaginary and the general solution is 
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A and B together give the solution form indicated. 

 

4. (20 Pts.) We have discussed in class the solution of the wave equation for two point sources, 

located at z d  , Problem 9.14. In the specific case that the sources are in phase, the far field 

radiated power (solid) angular distribution is 
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where 0P  is the power radiated by a single source,   is the radiation wavelength, and  is the 

usual polar angle with 0   along the z  axis. 



a. Assume 4d  . This means there is one half wavelength change in the wave from one point 

source to the other. Calculate the locations  that are maxima or minima in the power per unit 

solid angle. 
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b. What are the values of the angular power at the maxima and minima? Explain physically. 
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The sound field aligned or anti-aligned with the z  axis vanishes because of destructive 

interference of the radiation from the two dipoles, whereas there is no relative phase shift for 

radiation in the x y  plane. Here there is constructive interference. 

 

Students also derived the conditions for constructive or destructive interference by setting

 cos cos 1     . Although not as rigorous as above, this solution was acceptable because 

it yielded the correct answers. 

 

c. Now assume d  . Calculate locations  of angular power maxima and minima. How many 

maxima and minima are there? Explain. [Hint: cos  varies between 1 and -1 as   varies 

between 0 and  .] 
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These are the only solutions with cos in the physical range. Therefore there are nine 

separate maxima and minima. By plugging these solutions into the power calculations one 

obtains 
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There is constructive interference in the even “ cos ” directions and destructive interference 

in the odd “ cos ”. A ½ wavelength shift happens as each maxima becomes and minima and 

visa versa as  is varied. 

 

d. Suppose one has a single point source and a reflecting wall. How should one arrange the 

source to get the same wave field for 0z   as in Problem 9.14? 

 

By the method of images, simply put the single source at  0,0,r d and the wall along the

x y  plane. The sound field for 0z  will be identical to the above. 

 

5. (15 Pts.) In understanding both the wave equation and heat equation, the eigenfunctions of the 

three dimensional Helmholtz equation 
2 2 0k     

are important. 

a. Show the functions  , , , , i x i y i zx y z e e e  

    are eigenfunctions and compute the 

eigenvalue k  in terms of  ,  , and  . 
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b. What are the purely real eigenfunctions and associated eigenvalues whose values vanish at 

values 0, ,   0, ,  and 0,x a y b z c   ? What is the frequency of the lowest non-zero mode 

of a cube having b c a  ?  

 

The general x  eigenfunction is
iax i xAe Be  . To satisfy the boundary condition at 0x  ,

0A B  . To solve the boundary condition at x a  
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This works for all positive integers n . 0n  is excluded because then the solution vanishes. 

Clearly, the same argument works in the y and z directions. So the three-dimensional 

eigenfunctions satisfying the boundary conditions are 
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The eigenvalues are 
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For the cube the lowest eigenfrequency is
111 3 / a  . 

 

c. What are the purely real eigenfunctions and associated eigenvalues whose derivatives vanish 

at values 0, ,   0, ,  and 0,x a y b y c   ? 

 

To make the derivative boundary conditions vanish simply change the sines to cosines. Here 

zero is a possible eigenvalue, and if all three , ,m n p are zero one obtains the constant 

function, which indeed is an eigenfunction. 


