Theoretical Mechanics
Final Exam
December 11, 2018

(20 Pts.) Consider three pendula, each of length |, that are coupled by identical springs with
spring constant K . The pendula are horizontally separated by the natural rest length of the springs
d . The outer pendula have a mass m and the center pendulum has a mass 2m .

a. Draw a suitable diagram for this problem, letting ¢, represent the angle of the pendula.

The diagram should have three pendula hanging down. The angle the pendula are making
with the vertical are the ¢, . The diagram describes the coordinate assignments for the rest of
the problem.

b. Assuming the angles ¢ remain small, show that the Lagrangian of this system is
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c. Evaluate the mass and potential matrices and write the eigenvalue equation (do not attempt to
solve).
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2.

(20 Pts.) Consider a canonical transformation generated by
S,(a"+.q" R, P ) = Zq R+eG(d"+.q", R+, P,)

where ¢ is an infinitesimal quantity.

a. By neglecting any order g’or higher terms, show that the resulting canonical transformation
differs from the identity transformation by terms of order ¢ with
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Specifically, why is the second equality in the Q equation valid?

The equations
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are just the rules for defining the new coordinates with an S, generating function and are
exact. Nominally, they should be “solved” to obtain the transformation formulas
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Now, note that to the same order, by Taylor’s theorem, G'(q, f)) = G(ql,---,q", [VPEEES pn)
with the new momenta replaced by the old in the original generating function.

b. Under this canonical transformation, show that the function F (ql,---,q”, [FERES pn) changes

byanamountdFEF(Ql,---,Q”,Pl, ,n) (q, ,q",pl,---,pn)zg[F,G]tolinear

order in& where [F,G] is the Poisson Bracket.

By part a. and Taylor’s theorem, only collecting terms of linear order in &,
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c. If Gisa constant of the motion of the Hamiltonian flow with Hamiltonian H, what is dH?
What can you conclude? (Hint: Converse of Noether’s Theorem)

A constant of the motion has vanishing Poisson bracket with the Hamiltonian. By part b.,
dH=0. The (infinitesimal) transformation generated by the constant of the motion leaves the
Hamiltonian invariant. Incidentally, the same is true for finite transformations built up from a
series of infinesimal ones.

3. (25 Pts.) Consider a string of uniform mass density o with fixed end points and initial

configuration
u(x=0t)=0=u(x=L,t)

u(x,t=0)=f (x):asin(?’{xj
Z—‘:(x,t:o)=o

a. Write down the Lagrangian of this system assuming a uniform tension z in the string. Then
use the Euler-Lagrange equation to derive the equation of motion for the string.
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b. Introduce a linear damping force on the string. This change will modify the equation of
motion to,
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Explain why # must be a positive quantity.

If 5 were negative, the solution for ou / ot would tend to grow exponentially with time
indicating instability. Positive £ insures that the string motion is damped.

c. Substitute a solution of the form u(x,t) = p(x)¢(t) and into the equation of motion in part
b. Use separation of variables then the boundary and initial conditions to determine the
eigenfunctions p, (), and the space mode of the solution (don’t solve for ¢(t) yet).
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The general solution for thep(x) equation solving the boundary conditions in X is
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To solve the first initial condition only n = 3appears so
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The initial conditions for the problem become ¢(t =0)=1and ¢(t=0)=0.

d. Show that ¢(t) will have a functional form of ¢ (t) oc e™ [COS(Gt)—(F /G)sin(Gt)] , if
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You need not determine the coefficients F,G. [Hint: After separating variables in part c.,
assume ¢(t)=e’" where y is a constant.]

OT.
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If the condition is satisfied the square root is pure imaginary and the general solution is
¢(t) _ eFt I:AeiGt + Be—iGt]
¢(O)=1—> A+B=1
$(0)=0—F(A+B)+iG(A-B)=0

A and B together give the solution form indicated.

4. (20 Pts.) We have discussed in class the solution of the wave equation for two point sources,
located at z=+d , Problem 9.14. In the specific case that the sources are in phase, the far field
radiated power (solid) angular distribution is
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where P is the power radiated by a single source, A is the radiation wavelength, and @ is the
usual polar angle with @ =0 along the z axis.



a.

Assume A =4d . This means there is one half wavelength change in the wave from one point
source to the other. Calculate the locations @ that are maxima or minima in the power per unit
solid angle.
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What are the values of the angular power at the maxima and minima? Explain physically.
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The sound field aligned or anti-aligned with the z axis vanishes because of destructive
interference of the radiation from the two dipoles, whereas there is no relative phase shift for
radiation in the X—Y plane. Here there is constructive interference.

Students also derived the conditions for constructive or destructive interference by setting
COS(7Z' CosS 6?) =21 . Although not as rigorous as above, this solution was acceptable because
it yielded the correct answers.

Now assume A =d . Calculate locations @ of angular power maxima and minima. How many
maxima and minima are there? Explain. [Hint: CoSé varies between 1 and -1 as € varies
between 0 and 7 .]

%[H cos (47 cos ) | =—sin(4rcos0)4r(-sind)=0

..0=0,c0s60=0,cos0==+1/4,cos0=+2/4=+1/2,cos60 =+3/4,c0s0 =+1
These are the only solutions with cos @ in the physical range. Therefore there are nine

separate maxima and minima. By plugging these solutions into the power calculations one
obtains



dp, P P
=0 (cos=0)=—L[1+(1)]=-2
o (c0s8=0) 27[[+()J .

%(COSQ:ﬂM) =2P—°[1+(—1)] =0
T

IR (coso=21/2)= 1o _k

dQ(cose—ﬂ/Z) = [1+(1) = .

dP, P
] _43/4) =2 [14(-1)]=
dQ(cose 3/4) 27[[ +( ):' 0

dr, P P
—2(cos@=x1)=—L|1+(1) |=-2

] )= 5[+ (0)]=

There is constructive interference in the even “cos @ directions and destructive interference
in the odd “cos @ . A %2 wavelength shift happens as each maxima becomes and minima and

visa versa as @ is varied.

d. Suppose one has a single point source and a reflecting wall. How should one arrange the
source to get the same wave field for z > 0 as in Problem 9.14?

By the method of images, simply put the single source at = (O, 0,d ) and the wall along the
X—Y plane. The sound field for z > Owill be identical to the above.

5. (15 Pts.) In understanding both the wave equation and heat equation, the eigenfunctions of the
three dimensional Helmholtz equation

VO +k’Dd=0
are important.
a. Show the functions®, , (X,y,z)= e'*e'Me”? gre eigenfunctions and compute the

eigenvalue k intermsof o, f,and .
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b. What are the purely real eigenfunctions and associated eigenvalues whose values vanish at
valuesx=0,a, y=0,b, and z=0,c? What is the frequency of the lowest non-zero mode

of a cube having b=c=a?

The general X eigenfunction is Ae™ + Be'**. To satisfy the boundary condition atx =0,
A+B =0. To solve the boundary condition at X =a
Ae'™ +Be ™ =2Aisinaa=0—>a =nr/a.

This works for all positive integersn. n =0 is excluded because then the solution vanishes.
Clearly, the same argument works in the y and z directions. So the three-dimensional
eigenfunctions satisfying the boundary conditions are

sin(mzx/a)sin(nzx/a)sin(pzx/c) mn,p=123,:-
The eigenvalues are
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For the cube the lowest eigenfrequency is @, = J3zla.

c. What are the purely real eigenfunctions and associated eigenvalues whose derivatives vanish
at valuesx=0,a, y=0,b, andy=0,c?

To make the derivative boundary conditions vanish simply change the sines to cosines. Here
zero is a possible eigenvalue, and if all three m, n, p are zero one obtains the constant

function, which indeed is an eigenfunction.



