
Theoretical Mechanics 

Final Exam 

December 11, 2018 

 

1. (20 Pts.) Consider three pendula, each of length l , that are coupled by identical springs with 

spring constant k . The pendula are horizontally separated by the natural rest length of the springs

d . The outer pendula have a mass m and the center pendulum has a mass 2m . 

a. Draw a suitable diagram for this problem, letting i  represent the angle of the pendula. 

 

The diagram should have three pendula hanging down. The angle the pendula are making 

with the vertical are the i . The diagram describes the coordinate assignments for the rest of 

the problem. 

 

b. Assuming the angles i  remain small, show that the Lagrangian of this system is 
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c. Evaluate the mass and potential matrices and write the eigenvalue equation (do not attempt to 

solve). 
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2. (20 Pts.) Consider a canonical transformation generated by 
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 where   is an infinitesimal quantity. 

a. By neglecting any order 
2 or higher terms, show that the resulting canonical transformation 

differs from the identity transformation by terms of order   with 
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Specifically, why is the second equality in the
iQ  equation valid? 

 

The equations 
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are just the rules for defining the new coordinates with an 2S  generating function and are 

exact. Nominally, they should be “solved” to obtain the transformation formulas 

   , , ,i iP q p Q q p , leading to       1

1, , , , , , , ,n

nG q p G q q P q p P q p   . By the 

chain rule 
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Clearly, retaining terms of only linear order in  
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Now, note that to the same order, by Taylor’s theorem,    1
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with the new momenta replaced by the old in the original generating function. 

  

b. Under this canonical transformation, show that the function  1

1, , , , ,n

nF q q p p  changes 

by an amount      1 1
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order in  where  ,F G  is the Poisson Bracket. 

 

By part a. and Taylor’s theorem, only collecting terms of linear order in  , 
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c. If G is a constant of the motion of the Hamiltonian flow with Hamiltonian H, what is dH?  

What can you conclude? (Hint: Converse of Noether’s Theorem) 

 

A constant of the motion has vanishing Poisson bracket with the Hamiltonian. By part b., 

dH=0. The (infinitesimal) transformation generated by the constant of the motion leaves the 

Hamiltonian invariant. Incidentally, the same is true for finite transformations built up from a 

series of infinesimal ones. 

 

3. (25 Pts.) Consider a string of uniform mass density with fixed end points and initial 

configuration 
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a. Write down the Lagrangian of this system assuming a uniform tension in the string. Then 

use the Euler-Lagrange equation to derive the equation of motion for the string. 
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b. Introduce a linear damping force on the string. This change will modify the equation of 

motion to, 
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Explain why  must be a positive quantity. 

 

If   were negative, the solution for /u t  would tend to grow exponentially with time 

indicating instability. Positive   insures that the string motion is damped. 

 

c. Substitute a solution of the form      ,u x t x t   and into the equation of motion in part 

b. Use separation of variables then the boundary and initial conditions to determine the 

eigenfunctions  n x , and the space mode of the solution (don’t solve for  t yet). 
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The general solution for the  x  equation solving the boundary conditions in x  is 
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To solve the first initial condition only 3n  appears so 
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The initial conditions for the problem become  0 1t   and  0 0t   . 

 

d. Show that  t  will have a functional form of        cos / sinFtt e Gt F G Gt     , if 
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You need not determine the coefficients F,G. [Hint: After separating variables in part c., 

assume   tt e   where   is a constant.] 

 

Using the exponential ansatz 
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If the condition is satisfied the square root is pure imaginary and the general solution is 
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A and B together give the solution form indicated. 

 

4. (20 Pts.) We have discussed in class the solution of the wave equation for two point sources, 

located at z d  , Problem 9.14. In the specific case that the sources are in phase, the far field 

radiated power (solid) angular distribution is 
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where 0P  is the power radiated by a single source,   is the radiation wavelength, and  is the 

usual polar angle with 0   along the z  axis. 



a. Assume 4d  . This means there is one half wavelength change in the wave from one point 

source to the other. Calculate the locations  that are maxima or minima in the power per unit 

solid angle. 
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b. What are the values of the angular power at the maxima and minima? Explain physically. 
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The sound field aligned or anti-aligned with the z  axis vanishes because of destructive 

interference of the radiation from the two dipoles, whereas there is no relative phase shift for 

radiation in the x y  plane. Here there is constructive interference. 

 

Students also derived the conditions for constructive or destructive interference by setting

 cos cos 1     . Although not as rigorous as above, this solution was acceptable because 

it yielded the correct answers. 

 

c. Now assume d  . Calculate locations  of angular power maxima and minima. How many 

maxima and minima are there? Explain. [Hint: cos  varies between 1 and -1 as   varies 

between 0 and  .] 
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These are the only solutions with cos in the physical range. Therefore there are nine 

separate maxima and minima. By plugging these solutions into the power calculations one 

obtains 
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There is constructive interference in the even “ cos ” directions and destructive interference 

in the odd “ cos ”. A ½ wavelength shift happens as each maxima becomes and minima and 

visa versa as  is varied. 

 

d. Suppose one has a single point source and a reflecting wall. How should one arrange the 

source to get the same wave field for 0z   as in Problem 9.14? 

 

By the method of images, simply put the single source at  0,0,r d and the wall along the

x y  plane. The sound field for 0z  will be identical to the above. 

 

5. (15 Pts.) In understanding both the wave equation and heat equation, the eigenfunctions of the 

three dimensional Helmholtz equation 
2 2 0k     

are important. 

a. Show the functions  , , , , i x i y i zx y z e e e  

    are eigenfunctions and compute the 

eigenvalue k  in terms of  ,  , and  . 
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b. What are the purely real eigenfunctions and associated eigenvalues whose values vanish at 

values 0, ,   0, ,  and 0,x a y b z c   ? What is the frequency of the lowest non-zero mode 

of a cube having b c a  ?  

 

The general x  eigenfunction is
iax i xAe Be  . To satisfy the boundary condition at 0x  ,

0A B  . To solve the boundary condition at x a  

2 sin 0 / .i a i aAe Be Ai a n a          

This works for all positive integers n . 0n  is excluded because then the solution vanishes. 

Clearly, the same argument works in the y and z directions. So the three-dimensional 

eigenfunctions satisfying the boundary conditions are 

     sin / sin / sin /      , , 1,2,3,m x a n x a p x c m n p     

The eigenvalues are 
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For the cube the lowest eigenfrequency is
111 3 / a  . 

 

c. What are the purely real eigenfunctions and associated eigenvalues whose derivatives vanish 

at values 0, ,   0, ,  and 0,x a y b y c   ? 

 

To make the derivative boundary conditions vanish simply change the sines to cosines. Here 

zero is a possible eigenvalue, and if all three , ,m n p are zero one obtains the constant 

function, which indeed is an eigenfunction. 


